Procedural Optimization for Successful DCB Treatment

Joo Myung Lee, MD, MPH, PhD

Heart Vascular Stroke Institute, Samsung Medical Center, Seoul, Republic of Korea

SAMSUNG MEDICAL CENTER

Lessons from First Balloon Angioplasty

Balloon angioplasty with optimal size, blocking artery with 15-20 seconds. Post-PTCA pressure gradient was measured

SAMSUNG MEDICAL CENTER SAMSUNG

Grunzig A. NEJM 1979;301:61-68 Miere B. N Engl J Med 2001; 344:144-145

Drug-Coated Balloon Angioplasty

DCB Angioplasty requires essentially same technique with old PTCA

Successful Lesion Preparation No Immediate Procedural Complication (dissection, recoil, thrombus)

Therefore, Procedural Optimization is the Key!

DCB Evidence

Pub (Med.gov	Drug coated balloon OR drug eluting balloon, coronary X Search Advanced Create alert Create RSS User Guide					
	Save Email Send to Sorted by: Most recent J= Display options					
/Y NCBI FILTERS 🖪	5,569 Results					
ESULTS BY YEAR	Successful bailout stenting strategy against rare spontaneous retrograde					
	 dissection of partially absorbed magnesium-based resorbable scaffold: A case cite report. Liao ZY, Liou JY, Lin SC, Hung HF, Chang CM, Chen LC, Chua SK, Lo HM, Hung CF. Share World J Clin Cases. 2021 Feb 16;9(5):1148-1155. doi: 10.12998/wjcc.v9.i5.1148. 					
00	PMID: 33644179 Free PMC article. However, spontaneous retrograde dissection of a partially absorbed MgBRS may still occur, albeit rarely.					
1978 2021	CASE SUMMARY: We describe an unusual case of coronary artery disease in a patient who had					
EXT AVAILABILITY	undergone a successful PCI 8 mo earlier, where an MgBRS was implanted into the					
Abstract	An ultralow dose paclitaxel coated drug balloon with an outer protective sheath					
Free full text	2 for peripheral arterial disease treatment.					
Full text	Cite Zhang T, Guo G, Yang L, Wang Y.					
	J Mater Chem B. 2021 Feb 24. doi: 10.1039/d0tb02/20k. Online ahead of print.					

Most studies focused on comparison between DCB vs. DES, various subset of DCB application, or clinical outcome.

Conversely, there has been limited report about how to optimize the procedure.

How Optimize DCB Treatment? - First report evaluated this issue -

- Quantitative coronary analysis (QCA) of index DEB procedures
 - Baseline and final images + Images after lesion preparation (POBA)

Independent Factors Predicting TLF after DCB

Results of multivariable Cox regression with stepwise selection

	Hazard Ratio (95% CI)	Р
Procedure-related factors		
Residual %DS after lesion preparation (per 1%↑)	1.021	1.014 – 1.028
DCB-to-stent ratio (per 0.1↑)	0.778	0.608 – 0.994
Total inflation time of DCB (per 1 second↑)	0.993	0.990 – 0.996
Patient-related factors		
Peripheral vascular disease	2.274	1.574 – 3.285
Diabetes mellitus	1.687	1.290 – 2.206
Prior history of myocardial infarction	1.226	1.052 – 1.429
Hypertension	1.184	1.012 – 1.385
Lesion-related factors		
Complex (type B2 or C) lesion	1.737	1.198 – 2.517
Long lesion (≥ 28 mm)	1.272	1.045 – 1.549

Among Patient, Lesion, and Procedure related factors, Procedure-related factors are only modifiable factors.

SAMSUNG MEDICAL CENTER SAMSUNG

TM Rhee and JM Lee, , HS Kim et al. JACC Cardiovasc Interv 2018;11(10):969-978.

Optimal Cut-Off Values for Individual Procedure-related Factors

Optimal residual %DS after lesion preparation : 20% Optimal DCB-to-stent ratio : 0.91 Optimal total inflation time of DCB : 60 sec

Were the best cut-off values to discriminate the occurrence of TLF

Residual %DS after Lesion Preparation

Target Lesion Failure at 2Y

	Residual lesion pro	%DS after eparation	Multivariable-adjusted	Dvolue	
	≥ 20% < 20% (N = 101) (N = 120)		Hazard ratio (95% CI)	r value	
Target lesion failure	34.7% (31)	12.5% (14)	2.15 (1.86-2.48)	< 0.001	
Target vessel MI	6.4% (5)	0.0% (0)	12.5 (0.53-293.7)	N/A	
Clinically-driven TVR	31.4% (27)	12.9% (14)	2.44 (1.84-3.22)	< 0.001	
Clinically-driven TLR	30.4% (26)	10.2% (11)	2.62 (2.04-3.38)	< 0.001	

Superior efficacy outcomes in group with residual %DS < 20% than with residual %DS ≥ 20%, Mainly driven by the lower rates of TLR

Infers importance of "Proper Lesion Preparation" until residual %DS < 20%

Optimal DCB Size Selection

Target Lesion Failure at 2Y

	DCB-to-s	tent ratio	Multivariable-adjusted		
	≤ 0.91 (N = 26)	> 0.91 (N = 202)	Hazard ratio (95% CI)	P value	
Target lesion failure	46.4% (10)	21.9% (38)	2.02 (1.75-2.34)	< 0.001	
Target vessel MI	4.0% (1)	3.2% (5)	1.52 (0.18-12.8)	0.703	
Clinically-driven TVR	46.4% (10)	19.4% (32)	2.33 (1.95-2.78)	< 0.001	
Clinically-driven TLR	42.2% (9)	18.3% (30)	2.12 (1.76-2.55)	< 0.001	

Superior efficacy outcomes in group with DCB-to-stent ratio > 0.91 than with ratio \leq 0.91, Mainly driven by the lower rates of TLR

Infers importance of "Optimal size selection of DCB" with DEB-to-stent ratio > 0.91

Total Inflation Time of DCB

	Target Lesion Failure at 2Y				at 2Y		Total infla of I	ation time DCB	Multivariable-adiusted	_
	s (%)	o-	Total Inflation Total Inflation	Time ≤ 60 s Time > 60 s	ec ec 26.2%		≤ 60 sec (N = 216)	> 60 sec (N = 37)	Hazard ratio (95% CI)	Ρv
	f Event	0			~	Target lesion failure	26.2% (48)	14.0% (4)	1.82 (1.36-2.45)	< 0
	ence of		بر	مسم		Target vessel MI	3.5% (6)	0.0% (0)	1.11 (0.05-26.5)	0.
	e Incide	5	فممس		14.0%	Clinically-driven TVR	23.5% (41)	17.4% (5)	1.83 (1.37-2.45)	< 0
	nulative	-	- -			Clinically-driven TLR	22.5% (39)	11.5% (3)	2.33 (1.87-2.90)	< 0
	Cun		HR _{adjust} 1.	82 (95% CI 1	.36-2.45) p<0.001					
	0 200 400 600 80 Days after Index Procedure ■ Number at risk		total inflatio	total inflation time > 60s than with inflation time						
Dur	ration ≤ 60s	216	183	161	151	mai	nlv driven	by the lo	wer rates of TLR	,
Dur	ation > 60s	37	33	31	31					

Infers importance of "Sufficient Inflation of DCB" until total inflation time > 60 seconds

P value

< 0.001

0.948

< 0.001

< 0.001

Delivery Time of DCB

259 patients treated with DCB angioplasty Second report to expand the concept

Та	rget Lesion	Failu	re at 2Y			Delive of I	ry Time DCB	Multivariable-adiusted	
TLF (%)	n ≥ 25 sec n ≤ 25 sec				≤ 25 sec (N = 254)	> 25 sec (N = 55)	Hazard ratio (95% CI)	<i>P</i> valu
40	HR _{ad} 2.06, 95% CI 0.94-4.5 Log Rank, p = 0.018 Breslow, p = 0.052	50, <i>p</i> = 0.070			Target lesion failure	7.1% (18)	20.0% (11)	2.06 (0.94-4.50)	0.070
30			ſ	-	Target vessel MI	2.4% (6)	1.8% (1)	NR	NR
20		_			Clinically-driven TVR	8.3% (21)	20.0% (11)	NR	NR
10	,	ſ			Clinically-driven TLR	6.7% (17)	16.4% (9)	NR	NR
0	0 200 Days aft	400 er index proce	600 dure	800	Strong trends	of shorte	r delivery TL F	time and lower the r	isk of
ation > 23	55 50	38	29	18					
ation ≤ 23	254 198	158	122	84					

Infers importance of "Rapid Delivery of DCB" To minimize loss of the coated drug

P value

0.070

Incidence of Target Lesion Failure by Combined Procedure-related Factors

Fully Optimized DCB Angioplasty showed similar TLF rates with DES in previous ISR trials.

H Rittger et al. JACC 2012, RA Byrne et al. Lancet 2013 B Xu et al. JACC Intervention 2014, F Alfonso et al. JACC 2015 TM Rhee and JM Lee, , HS Kim et al. JACC Cardiovasc Interv 2018;11(10):969-978.

"Four Major Procedural factors" to Enhance Clinical Outcomes after DCB treatment

- Perfect lesion preparation before DCB treatment: Residual %DS < 20% Makes the lesion easy to be coated with drug
- 2) DCB-to-stent ratio : at least 0.9

Increases the contact area to maximize drug delivery Also warrants the optimal lesion preparation

3) Rapid delivery of DCB device : delivery time < 25-30 seconds

Minimizes the amount of drug lost during delivery May need additional supporting devices

4) Total Inflation Time of DCB : at least 60 seconds

Increases the time and chance for drug to be delivered Needs the ischemic preconditioning before DCB treatment

Additional Techniques in Lesion Preparation

Benefit of Scoring Balloon in Lesion Preparation ISAR-DESIRE 4 - 252 patients with DES ISR Scoring balloon vs. Conventional balloon

Percentage diameter stenosis on 6- to 8-month follow-up angiography; data shown for scoring balloon group (green) and control group (gray).

	Scoring Balloon (n = 103)	Control (n = 100)	p Value
Diameter stenosis (%), in segment	$\textbf{35.0} \pm \textbf{16.8}$	40.4 ± 21.4	0.047
Minimal luminal diameter (mm), in segment	1.95 ± 0.55	$\textbf{1.77} \pm \textbf{0.68}$	0.032
Late lumen loss (mm)	0.31 ± 0.59	0.41 ± 0.74	0.27
Recurrent binary restenosis	19 (18.5)	32 (32.0)	0.026
Characteristics of recurrent restenotic lesions	(n = 19)	(n = 32)	
Diameter stenosis (%), in segment	62.5 ± 12.4	$\textbf{66.8} \pm \textbf{14.0}$	0.28
Lesion length	10.7 ± 4.6	$\textbf{9.9} \pm \textbf{5.5}$	0.58
Restenosis morphology			0.22
Focal margin	1 (5.3)	1 (3.1)	
Focal body	12 (63.2)	18 (56.3)	
Multifocal	2 (10.5)	1 (3.1)	
Diffuse	3 (15.8)	10 (31.3)	
Proliferative	0 (0.0)	1 (3.1)	
Occlusive	1 (5.3)	1 (3.1)	

Modification of neointima using scoring balloon showed Lower binary restenosis and Higher follow-up %DS

SAMSUNG MEDICAL CENTER SAMSUNG

J Am Coll Cardiol Intv 2017;10:1332-40

Consensus Documents

International Consensus

Optimal Lesion Preparation if the most important step before DCB application

Asian-Pacific Consensus

International Consensus - J Am Coll Cardiol Intv. 2020;13(12):1391–402. Asian-Pacific Consensus - Cardiol J. 2019 Sep 30. doi: 10.5603/CJ.a2019.0093.

SAMSUNG MEDICAL CENTER SAMSUNG

Case Example of Optimized DCB Procedure - Baseline Angiography -

42/Female

s/p PCI to pLAD (4 years ago) at Outside hospital

- PCI indication unknown
- Stent size and length unknown

Presented with Unstable Angina with Resting Chest pain

Case Example of Optimized DCB Procedure - Repeated Pre-Dilatation -

Total 4 times of Pre-dilatation with 30 seconds duration → Ischemic Pre-Conditioning

SAMSUNG MEDICAL CENTER SAMSUNG

Case Example of Optimized DCB Procedure - Post Pre-Dilatation -

- Percent Diameter Stenosis After Pre-Dilatation 17%
- No Significant Dissection
- TIMI 3 Flow
- Intravascular Imaging is Key!!

Case Example of Optimized DCB Procedure - DCB Application -

Delivery Time : 25 seconds

Total Inflation Time : 80 seconds

Patient was well tolerated.

Case Example of Optimized DCB Procedure - Final Angiogram -

SAMSUNG MEDICAL CENTER SAMSUNG

Case Example of Optimized DCB Procedure - Final IVUS -

Summary and Conclusions

- DCB is fundamentally different treatment with stent.
- Optimal lesion preparation is the key process before DCB application
- Procedural optimization of DCB is more important than that of DES.
- In order to maximize DCB results, 4 major procedural factors should be considered.
 - Perfect lesion preparation (residual %DS<20%)
 - Optimal selection of DCB size (at least >0.9 of reference)
 - Rapid delivery of the DCB into target lesion (≤25-30 seconds)
 - Sufficient total inflation time (>60 seconds)